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“One man’s noise is another man’s signal.” – Edward Ng

 “Prediction is very difficult, especially if it's about the future.” – Nils Bohr

“Our first obligation is to keep the foo counters turning.” – Dictionary of the TMRC Language

Todo

This is a draft. Still to do:

 Flesh out last section Declaring an Anomaly
 After the introduction this is a terse iteration and brief explanation of methods, many of 

which are hard to understand without examples. Too dense as is. Add examples.
 Perhaps expand on the issue of data collection/quality
 Add references/citations

Introduction

A typical operations monitoring system uses simple thresholds to trigger most alerts, for 
example:

 Device/service has not responded for N minutes or N periods 
 Performance metric is above or below absolute boundary
 Performance metric is within absolute boundary but “too close” (N units or N% away)

Simple thresholds are great because they are easy to understand, easy to implement, and catch 
most of the serious operational concerns. However, even when behavior is nominal according to 
the thresholds, the monitoring data are a treasure trove that, properly analyzed, can reveal 
anomalous, cycling, and trending behavior well worthy of human attention. For example, we 
might like to know about the following operating conditions:

 Performance/load/temperature/etc. of service/device differs significantly from itself in 
the past (includes typical threshold monitoring)

 Performance of device differs significantly from the usual performance of the same type 
of device sharing the same job and load (intra-cluster)

 Performance of device differs significantly from the overall usual performance of the 
same type of device

 Performance of application running on a cluster differs significantly from itself in the 
past

 Performance of application running on a cluster differs significantly from usual 
performance of application across all clusters



 Recent performance cycles do not match previous cycles
 Performance is trending linearly or the trend itself is changing (accelerating or 

decelerating)
 User access pattern on a device or cluster differs significantly from the past

“Performance” includes all health-oriented observations, including the error/failure/recovery 
profile. In the above list replace “performance” with “configuration” for another set of 
differences we might like to know about. Performance and configuration variables can be 
generalized as attributes. For the purpose of identifying anomalies and trends, performance and 
configuration fundamentally differ only by how often we expect the attribute values to change. 
For example, we expect the amount of server memory used to vary over time, but we do not 
expect the amount of physical RAM to change very often. We want to compare attributes as well 
as objects carrying one or more vectors of attributes. All of these are comparisons either of an 
object to itself across time, or of an object to a like object at the same time. These comparisons 
can generate alerts and reports of interest to different parties:

 Sudden change: operational personnel, perhaps escalated to systems engineering
 Outliers comparing objects to like objects: systems engineering, perhaps escalated to 

management
 Seasonality (cyclic patterns) and trends (gradual directed change): systems engineering 

and management

When such conditions are properly identified and communicated we are spurred to take 
advantage of these opportunities, among others: quickly mitigate events, solve the right 
problems, provision appropriate capacity, identify and reclaim unused capacity, up-sell 
additional capacity.

In order to detect operational anomalies, trends, and seasonality we can summarize the 
challenges as: exposing information in a univariate time series, measuring distance between 
vectors and between objects, and declaring an anomaly when differences are significant enough 
to require human attention.

Exposing Information in a Time Series

We can apply univariate (single variable) time series analysis to reveal information in the 
monitoring data. A univariate time series is a sequence of observations (measurements) of a 
single attribute of a single object, with the observations performed at a consistent frequency. It 
can also be described as the vector of an interval variable (range) across the time domain.

Using transformations (filters/functions) with different characteristics we can suppress some 
information in order to highlight (expose/detect) other information. We would like to expose 
the following information: acute changes, trends, and seasonality.

In the immediate sense an acute change is a sudden departure from recent behavior, marked by 
the most recent observation(s) being significantly different from the immediately previous 



observation(s). In retrospect of a longer time series, acute changes are indicated by local outliers
—that is, observations that are significantly different than observations nearby in time.

A trend is a gradual change. A basic trend is a straight line on a slope. The trend itself can also 
trend, in other words accelerate or decelerate. Such second-order trending is of special interest 
and can constitute an anomaly in that we intuitively expect and plan only for first-order trends.

Seasonality is the parlance of time series analysts for cyclical (repeated) variation. In early work 
they needed a way to describe and discount the usual variation in sales from season to season. 
For example, automobile sales are usually higher in Spring than Autumn. The term holds even 
for short cyclical variation, such as traffic at noon usually being greater than traffic at midnight.

To expose acute changes, suppress the overall trend and seasonality. To expose trends, suppress 
seasonality and high-frequency noise. To expose seasonality, suppress the overall trend and high 
frequency noise. There exist several prediction formulas designed to generate a grand unifying 
model simultaneously accounting for noise, trends, seasonality—but they require very careful 
tuning of several mysterious parameters and are prone to instability or over-fitting. The more 
parameters in a model, the more likely it only follows the data and does not represent an 
underlying relationship. We are likely better off splitting up the study and applying just the 
appropriate filters based on what information we wish to expose for that part of the study.

Caveats and Assumptions for Time Series Analysis

Classical statistical methods of time series analysis assume that the series has a normal 
distribution of noise with possible components of trend and/or seasonality. This is a 
simplification which sometimes leads to artifacts (spurious results). A violation of the 
assumption of normal noise can be mitigated with a robust statistical estimator (function that 
measures distance from model to data) that is less sensitive to outliers than a classical estimator.

Statistical methods also assume that the time series contains values observed at a consistent 
frequency and for which every value is a valid observation. Inconsistent sampling frequency and 
nonsensical observation values contribute to artifacts. Because of such collection issues 
operational monitoring data are, strictly speaking, event series—not time series. However, 
analyzing an event series is much harder than analyzing a time series, so we approximate the 
latter the best we can by striving to improve data quality: the collection mechanism should be 
reliable, consult a state table to decide if the system is in a mode such that a given attribute is 
meaningful at the time of observation, and finally, discard ridiculous values. The data retrieval 
mechanism should be able to interpolate missing values when feeding time series analyses.

If observation sampling is of insufficient resolution to capture at least the rough shape of any 
high-amplitude seasonality there will be artifacts.

We assume there will be some artifacts in time series analyses results so we will subsequently 
apply additional techniques to minimize the incidence of false positive and false negative errors 
in anomaly detection.

Exposing Acute Changes in a Time Series



To expose acute changes in a time series, use a high pass filter. Here is a crude one:

 Take a poor man’s first order derivative by differencing: from raw series foo generate a 
new series bar that consists of the difference between adjacent observations in foo.

 Values of bar beyond a certain level of standard deviation from mean may be significant 
and therefore an acute anomaly. 

This filter takes advantage of the most basic principle of auto-correlation in a time series: in the 
absence of any other model, the previous observation is the best prediction of the next 
observation. In fact, when there is more than one factor in the behavior this works better than 
most models—which says something about how difficult it is to make a good model.

Here is a better high pass filter:

 Run a low period smoothing function on series foo to generate lightly smoothed series 
bar. A good and popular choice is the exponential moving average (EMA) where more 
recent observations are given more weight. A better choice is a kernel (local) smoother, 
which has two major advantages: it works well even when the observation period is 
irregular, and it preserves the phase of the original series—unlike any moving average, 
which contributes a phase lag proportional to the degree of smoothing.

 Subtract bar from foo to obtain residual (irregular component) series baz.
 Values of baz beyond a certain level of standard deviation from mean may be significant. 

Neither of these methods compensate for an accelerating trend that would generate more 
outliers toward the end of the sequence. This is intentional; we want to know about such 
behavior. Because we want to highlight outlying observations we use classical standard deviation 
as an outlier amplifier.

Exposing Trends in a Time Series

To expose the trend, suppress seasonality and high-frequency noise:

 Choose a time frame that is at least five times longer than the longest prominent 
seasonality in the data. A shorter time frame may appear to contain a trend that is 
actually just one side of seasonality.

 Perform a multiple linear regression of first and second-order polynomials on raw series 
foo to find the trend curve bar.

 Plot bar against foo. A significant trend should be easily observed and sufficient for 
planning purposes.

 If there is a second-order polynomial component the trend is accelerating or 
decelerating, which may be a significant anomaly.

In this case we prefer that outliers not skew the results so we use a robust estimator, median 
absolute deviation, for regression fitting.

Exposing Seasonality in a Time Series



To expose seasonality, suppress the overall trend and high frequency noise:

 Subtract from raw series foo the trend found in the previous section to generate series 
bar.

 Run a kernel smoother on bar to generate lightly smoothed series baz.
 Plot baz. Significant seasonality of a period less than, say, 1/10 of the series length 

should be easily observed and sufficient for planning purposes.

It is possible to automatically identify seasonality using signal processing techniques. If a time 
series signal is detrended, cyclo-stationary (consistently repeats itself, i.e., completely 
predictable) and is just the sum of one or more cycles sufficiently distinct in frequency, we can 
use a Fourier transform to rotate the time domain into a frequency domain and decompose the 
signal into a list of frequencies, amplitudes, and phases. Unfortunately, signals amenable to 
Fourier analysis are rare in the real world. While the operational data of interest are generated 
by deterministic processes, there are too many factors for the results to be very predictable. A 
generalization of Fourier processing is wavelet processing, which can extract frequency 
information from a non-stationary signal. Wavelet theory is a fascinating diversion, but is 
unnecessary to achieve our goal of robust anomaly detection. It turns out that we do not have to 
explicitly identify the seasonality in order to discount it or detect a change in it. Therefore we do 
not need to pursue independent component analysis or any other blind source separation 
methods unless we are after a spectral density signature.

Measuring Distance Between Vectors and Objects

We compare current performance of like objects (devices/services/applications) with the intent 
of exposing those objects behaving differently. It is easy to compare vectors that are sequential 
observations of the same attribute over the same time frame:

 From all input vectors generate median vector foo (foo element 0 is the median of 
element 0 of all input vectors, element 1 is the median of element 1 of all input vectors, 
etc.)

 For each input vector subtract foo then sum the absolute values of all remainders. The 
sum (one for each vector) represents the distance from the median.

 Distances beyond a certain level of standard deviation may be significant and therefore 
indicate anomalous behavior.

How do we compare like vectors of an object to itself across time? Recall the basic principle of 
auto-correlation in a time series: in the absence of any other model, the previous observation is 
the best prediction of the next observation.  This applies to a chunked series of observations as 
well: we can generally expect the next time frame to be similar to the previous time frame. If we 
pick the appropriate frame and it’s not roughly the same then there is a trend or a more complex 
behavioral change. If we compare the essential shape of entire frames and find matches we can 
discount the redundancy (repeating patterns) leaving a residual of the non-repeating behavior—
anomalous by definition. The redundancy itself may also be of some interest for planning 
purposes. This autocorrelation—comparing a signal to a time-lagged version of itself—amounts 
to measuring the distance between like vectors but with a serious wrinkle: we do not know the 



period of the repeating part of the signal, so we do not know the appropriate lag to apply before 
comparing vectors, nor the appropriate frame width. After discounting the overall trend, there 
are several ways to attack this problem:

The classic autocorrelator is the parametric Box and Jenkins autoregressive moving average 
model. Unfortunately, the parameters are very difficult to estimate and the model works best on 
a time series with uncomplicated behavior. It is not recommended for this application.

The brute-force approach is to iteratively compare frames of increasing width against every 
phase (lag) of the vector to find the best matches (judged as those with the smallest difference 
between the frames). The description of this concept helps us to understand what we are looking 
for, but is computationally unfeasible with vectors of a useful length.

We could apply parallel-hybrid evolutionary computation methods (steady state, variable length 
real-value genome, roulette-wheel and genetic variance selection for breeding and culling, two-
parent propagation with modified uniform crossover, local hill-climbing via parthenogenesis, 
self-adaptive mutation rate, etc.)—but models generated by evolutionary computation often 
overfit to the input data and therefore are not reliable for prediction. EC is best for finding 
specific solutions, not models.

Dynamic Time Warping (DTW) introduced by Bellman et al. is a popular, visually intuitive 
method of pairwise comparison based on a recurrence plot. The vectors are represented on two 
axes and the intersection is flagged if the vector elements have the same value. Congruent 
autocorrelation appears as a diagonal run (slope of 1). Stretched autocorrelation (pattern match 
but at different speed) appears as a diagonal run of positive slope other than 1. DTW reveals 
correlations even when the repeated patterns have different gaps between them in the two 
vectors. We discount portions of the vector corresponding to long diagonal runs of slope 1. 
Portions not corresponding to a diagonal run are anomalous. Although the basic DTW function 
is nonparametric, for this application we would set a threshold of intersection (diagonal run) 
length above which we consider a significant match and therefore discountable from the vector. 
We can also use the fraction of points forming diagonal lines or the mean diagonal line length as 
measures of determinism or inverse divergence, respectively. DTW is an excellent exploration 
tool because the human eye can immediately spot correlation patterns in the recurrence plot. 
However, it is probably not the best tool for automated anomaly detection. 

The Compression-based Dissimilarity Measure (CDM) by Keogh et al. is an exciting and elegant 
nonparametric method of anomaly detection based on Kolmogorov Complexity (a measure of 
randomness) and more specifically the Minimum Description Length (MDL) principle by 
Rissanen. When applied to a time series CDM uses a divide and conquer algorithm iteratively 
comparing the compressibility of a subvector to the compressibility of each half of the subvector. 
The result is a direct identification of the location and degree of greatest novelty (anomaly) in 
the global time series vector without having to explicitly find appropriate phases or frame widths 
for comparison. CDM is much newer than DTW but gaining in popularity and is relatively easy 
to implement. CDM can also be used to compare multivariate (multi-dimensional) objects and it 
implicitly collapses redundant dimensions with no additional effort. Nominal and ordinal 
variables are handled natively, as are interval variables if there are not too many different 



values. Real number values should be summarized as described below. The only required CDM 
“parameter” is the type of compression algorithm, which is easy to select; it is simply the 
algorithm among those on hand which produces the shortest output from the global vector. 
Finally, although it is trivial to comparing one-dimensional vectors of like objects in the same 
time frame, we might as well use CDM for that comparison as well, because we already need it 
for comparing objects across time.

In order for DTW or CDM to cope effectively with a real number vector we must first summarize 
the vector. In one sense it is filtering out the high frequency noise, but more importantly it is 
finding a “close enough” approximation of values such that we can minimize the number of 
values used while retaining the essential shape of the signal. There are many methods for this, 
including Fourier or wavelet transforms (only effective if there are obvious periodicities in the 
signal), Singular Value Decomposition (SVD), Chebyshev polynomials (CHEB), Indexable 
Piecewise Linear Approximation (IPLA), Adaptive Piecewise Constant Approximation (APCA), 
and Piecewise Aggregate Approximation (PAA). A recent and excellent branch of PAA is the 
Symbolic Aggregate approXimation (SAX) by Keogh et al. In its simplest application, SAX 
encodes a time series vector into a compact string. SAX can also be used to compare two vectors 
but for our purposes it is best used as a preprocessor for CDM.

Also, once real number vectors have been encoded into strings we can measure the Levenshtein 
distance between them (the least number of edit operations—insertion, deletion, substitution of 
a character) that would transform one string into the other. This is a very popular metric in 
bioinformatics and might be a useful estimator to supplement CDM.

Declaring an Anomaly

Assumption: on average, we're taking good care of the systems, so the median of their signatures 
is a healthy signature.

We intuitively define an outlier as something that isn’t part of the normal group. In order to 
assess if something is in the group, we measure the similarity then apply a threshold and declare 
that items beyond that threshold of similarity are outliers. The threshold is subjective—but 
similarity (1/distance) can be scored and ranked objectively.

Use clustering (many methods to choose from)

Tag objects with possible anomalies. Consider using a decaying score because the most 
important anomalies are recent.

Rank anomalous objects in presentation so that most important ones receive first attention.

We can send alerts, reports, and/or automatically trigger external processes.

If computing resources are limited, consider prioritizing the acute change analysis phase over 
the others, starting with the more recent and shortest time frame. Then give it a fast track 
through the anomaly sanity check.



Thanks

Reviewers: Josh B,


